Skip to main content

Release Notes

Version beta-0.5 (November 27, 2025)โ€‹

First Public Beta Release

This is the initial beta release of the Context Engineering Framework (CEF) from DDSE Foundation. CEF provides an ORM-like abstraction for LLM context engineering, managing knowledge models through dual persistence (graph + vector stores).


๐ŸŽฏ Release Highlightsโ€‹

  • ORM for Context Engineering - Define knowledge models (nodes, edges) like JPA entities
  • Dual Persistence - Automatic management of graph and vector stores
  • Intelligent Context Assembly - 3-level strategy (relationship navigation โ†’ semantic โ†’ keyword)
  • Structured Patterns - Repository layer, service patterns, lifecycle hooks
  • Comprehensive Documentation - USER_GUIDE, ARCHITECTURE, examples

โœจ Core Featuresโ€‹

Knowledge Model ORMโ€‹

  • Entity Persistence - Node and Edge entities with JSONB properties
  • Relationship Navigation - Multi-hop graph traversal with semantic filtering
  • Vectorizable Content - Automatic embedding generation and persistence
  • RelationType System - Semantic hints (HIERARCHY, CAUSALITY, ASSOCIATION, etc.)

Storage Backends (Pluggable)โ€‹

  • โœ… DuckDB - Embedded database (default, tested)
  • โœ… JGraphT - In-memory graph store (default, tested)
  • โš ๏ธ PostgreSQL - External database with pgvector (configured, untested)
  • โš ๏ธ Neo4j - Graph database for large-scale deployments (configured, untested)
  • โš ๏ธ Qdrant - Vector database (configured, untested)
  • โš ๏ธ Pinecone - Cloud vector database (configured, untested)

LLM Integrationโ€‹

  • โœ… vLLM - Production inference server with Qwen3-Coder-30B-A3B-Instruct-FP8 (tested)
  • โœ… Ollama Embeddings - nomic-embed-text model, 768 dimensions (tested)
  • โš ๏ธ OpenAI - GPT-4, GPT-3.5 Turbo (configured, untested)
  • โš ๏ธ Ollama LLM - Llama 3.x models (configured, untested)

Context Assemblyโ€‹

  • Pattern-Based Retrieval - GraphPattern with TraversalStep and Constraint
  • Multi-Hop Reasoning - Configurable depth (1-5 hops)
  • 3-Level Fallback - Graph โ†’ Hybrid โ†’ Vector-only
  • Semantic Filtering - Relationship semantics-aware traversal

Developer Experienceโ€‹

  • Repository Pattern - Domain-specific facades over ORM layer
  • Service Layer - Business logic separation with transaction support
  • Reactive API - Spring WebFlux + R2DBC for non-blocking I/O
  • Configuration - YAML-based with sensible defaults

๐Ÿ“ฆ What's Includedโ€‹

Framework (cef-framework)โ€‹

<dependency>
<groupId>org.ddse.ml</groupId>
<artifactId>cef-framework</artifactId>
<version>beta-0.5</version>
</dependency>
  • KnowledgeIndexer - Entity persistence (like EntityManager)
  • KnowledgeRetriever - Context queries (like Repository)
  • GraphStore - Pluggable graph backend interface
  • VectorStore - Pluggable vector backend interface
  • Node, Edge, Chunk, RelationType - Core domain entities
  • GraphPattern, TraversalStep, Constraint - Query DSL

Comprehensive Test Suiteโ€‹

  • Medical Domain: 150 patients, 5 conditions, 7 medications, 15 doctors (177 nodes, 455 edges)
  • Financial Domain: SAP-simulated data (vendors, materials, purchase orders, invoices)
  • Benchmarks: 4 complex scenarios proving Knowledge Model superiority
  • Results: 60-220% improvement over vector-only search (see Benchmark Analysis)

Documentationโ€‹

  • USER_GUIDE.md - Complete ORM integration guide (30KB, 1,200 lines)
  • ARCHITECTURE.md - Technical deep dive
  • QUICKSTART.md - Getting started in 5 minutes
  • KNOWN_ISSUES.md - Testing status and limitations
  • README.md - Project overview

๐Ÿงช Testing Statusโ€‹

Thoroughly Tested โœ…โ€‹

  • DuckDB embedded database
  • JGraphT in-memory graph (up to 100K nodes)
  • vLLM with Qwen3-Coder-30B-A3B-Instruct-FP8
  • Ollama embeddings (nomic-embed-text, 768 dimensions)
  • Pattern-based retrieval with multi-hop reasoning
  • Medical domain example with benchmarks

Configured but Untested โš ๏ธโ€‹

  • PostgreSQL + pgvector
  • Neo4j graph database
  • OpenAI GPT models
  • Ollama LLM models (Llama 3.x)
  • Qdrant vector database
  • Pinecone vector database

See Known Issues for details.


๐Ÿš€ Getting Startedโ€‹

Prerequisitesโ€‹

  • Java 17+
  • Maven 3.8+
  • Docker & Docker Compose

Quick Startโ€‹

# Clone repository
git clone <repository-url>
cd ced

# Start services (Ollama for embeddings)
docker-compose up -d

# Note: vLLM (Qwen3-Coder-30B) required for benchmark reproduction
# See https://docs.vllm.ai/ for installation

# Build framework
mvn clean install

# Run test suite (includes benchmarks)
cd cef-framework
mvn test

# View benchmark results
open cef-framework/BENCHMARK_REPORT.md
open cef-framework/BENCHMARK_REPORT_2.md
open cef-framework/SAP_BENCHMARK_REPORT.md

Example Usageโ€‹

// Define knowledge model
Node patient = new Node(null, "Patient",
Map.of("name", "John", "age", 45),
"Patient John with diabetes");

// Persist entity
indexer.indexNode(patient).block();

// Define relationship
Edge hasCondition = new Edge(null, "HAS_CONDITION",
patientId, diabetesId, null, 1.0);
indexer.indexEdge(hasCondition).block();

// Query context
SearchResult result = retriever.retrieve(
RetrievalRequest.builder()
.query("diabetes treatments")
.depth(2)
.topK(10)
.build()
);

๐Ÿ† Benchmark Resultsโ€‹

Comprehensive test suite validates Knowledge Model superiority over vector-only approaches.

Test Domainsโ€‹

  1. Medical Clinical Decision Support

    • 177 nodes: Patients, Conditions, Medications, Doctors
    • 455 edges: Multi-hop relationships
    • 4 complex scenarios: Contraindication discovery, behavioral patterns, cascading risks, transitive exposure
  2. Financial SAP-Simulated Data

    • Enterprise procurement workflows
    • Vendor-Material-Invoice relationships
    • Transaction pattern analysis

Key Findingsโ€‹

ScenarioVector-OnlyKnowledge ModelImprovement
Multi-hop contraindication5 chunks12 chunks+140%
Behavioral risk patterns5 chunks8 chunks+60%
Cascading side effects5 chunks8 chunks+60%
Transitive exposure risk5 chunks16 chunks+220% ๐Ÿ”ฅ
Average5.0 chunks11.0 chunks+120%

Latency: 26ms avg (only +19.5% vs vector-only 21.8ms)

Benchmark Comparison

See Benchmark Analysis for detailed analysis.


๐Ÿ“Š Performance Characteristicsโ€‹

Tested Configuration: DuckDB + JGraphT + vLLM (Qwen3-Coder-30B) + Ollama (nomic-embed-text)

OperationPerformanceNotes
Node indexing<50ms per nodeSingle insert
Batch indexing~2s per 1000 nodesTransactional batch
Graph traversal (depth 2)<50msJGraphT in-memory
Vector search (10K chunks)~100msDuckDB brute-force
Hybrid assembly~150msGraph + vector combined
Embedding generation~200ms per chunkOllama nomic-embed-text

Benchmark Results (Medical Domain):

  • Vector-only: 60 chunks retrieved
  • Knowledge Model ORM: 132 chunks retrieved (120% improvement)
  • Relationship-aware context with proper entity boundaries

๐Ÿ”ง Configuration Exampleโ€‹

cef:
# Storage backend
database:
type: duckdb # or postgresql
duckdb:
path: ./data/cef.duckdb

# Graph store
graph:
store: jgrapht # or neo4j
preload-on-startup: true

# Vector store
vector:
store: duckdb # or postgres, qdrant, pinecone

# LLM provider
llm:
default-provider: vllm # or ollama, openai
vllm:
base-url: http://localhost:8001
model: Qwen/Qwen3-Coder-30B-A3B-Instruct-FP8

# Embedding provider
embedding:
provider: ollama # or openai
model: nomic-embed-text
dimension: 768

๐Ÿ› Known Limitationsโ€‹

  1. JGraphT Memory - Recommended maximum 100K nodes (~350MB)
  2. PostgreSQL Untested - Schema provided but not integration tested
  3. Concurrent Indexing - Not thread-safe, use sequential loading
  4. DuckDB Vector Search - Brute-force only, no HNSW index
  5. No Schema Validation - RelationType semantics are advisory
  6. Limited Observability - Basic metrics only, enhanced planned for v0.6

See Known Issues for complete list and workarounds.


๐Ÿ“ Documentationโ€‹


๐Ÿ›ฃ๏ธ Roadmapโ€‹

v0.6 (Planned - Q1 2026)โ€‹

  • PostgreSQL production testing and validation
  • Thread-safe concurrent indexing
  • Enhanced observability (metrics, tracing)
  • Performance optimizations for large graphs
  • OpenAI integration testing

v0.7 (Planned - Q2 2026)โ€‹

  • Intelligent context truncation
  • L1/L2 caching implementation
  • Multi-tenancy patterns
  • Qdrant/Pinecone testing

v1.0 (Planned - Q3 2026)โ€‹

  • Production-grade release
  • Comprehensive test coverage
  • Auto-migration support
  • Schema validation framework
  • Community-tested all backends

๐Ÿค Contributingโ€‹

We welcome contributions, especially:

  • Testing untested configurations (PostgreSQL, OpenAI, Neo4j)
  • Performance benchmarking on different scales
  • Documentation improvements
  • Bug reports and fixes
  • Feature requests

See Known Issues for areas needing community testing and validation.


๐Ÿ“„ Licenseโ€‹

MIT License

Copyright (c) 2024-2025 DDSE Foundation

See LICENSE file for details.


๐Ÿ™ Acknowledgmentsโ€‹

  • DDSE Foundation - https://ddse-foundation.github.io/
  • Author - Mahmudur R Manna (mrmanna), Founder and Principal Architect
  • Built with Spring Boot, Spring AI, JGraphT, DuckDB, and pgvector
  • Inspired by Hibernate/JPA ORM patterns

๐Ÿ“ž Supportโ€‹

  • Documentation: User Guide | Architecture
  • Issues: GitHub Issues (repository link TBD)
  • Community: DDSE Foundation website
  • Email: Contact through DDSE Foundation

Thank you for trying CEF beta-0.5!

We appreciate your feedback as we work toward v1.0. Please report any issues or share your success stories with the community.


DDSE Foundation - Decision-Driven Software Engineering
https://ddse-foundation.github.io/